
 
American Journal of Theoretical and Applied Statistics 
2023; 12(6): 161-173 
http://www.sciencepublishinggroup.com/j/ajtas 
doi: 10.11648/j.ajtas.20231206.12 
ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)  

 

Early Diagnosis of Pneumonia from Chest X-Rays Using a 
Capsule Network Model: Enhancing Accuracy and 
Efficiency in Automated Image Classification 

Mbae Karwitha Maureen
*
, Thomas Mageto, Anthony Wanjoya 

Department of Statistics and Actuarial Science, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya 

Email address: 

 
*Corresponding author 

To cite this article: 
Mbae Karwitha Maureen, Thomas Mageto, Anthony Wanjoya. Early Diagnosis of Pneumonia from Chest X-Rays Using a Capsule Network 

Model: Enhancing Accuracy and Efficiency in Automated Image Classification. American Journal of Theoretical and Applied Statistics.  

Vol. 12, No. 6, 2023, pp. 161-173. doi: 10.11648/j.ajtas.20231206.12 

Received: October 2, 2023; Accepted: October 20, 2023; Published: November 9, 2023 

 

Abstract: Pneumonia is a significant public health concern worldwide, causing substantial morbidity and mortality. Early, 
accurate diagnosis is vital in ensuring timely treatment and improving patient outcomes. Chest X-ray analysis is the standard 
procedure used most frequently to diagnose pneumonia, but the accurate and timely interpretation of these images can be 
complex and time consuming. This research aimed to develop a capsule network (CapsNet) model for image classification, 
based on the Capsule network model introduced by Sabour and his colleagues in 2017 enabling automated chest X-ray analysis 
for early detection of pneumonia. Pneumonia impacts diverse populations, with vulnerable groups such as the elderly, young 
children and immunocompromised individuals at heightened risk. Delayed or missed diagnoses can lead to severe 
complications and increased healthcare costs. The reliance on human expertise for chest X-ray interpretation introduces the 
potential or errors, therefore there is a dire need to develop automated and precise diagnostic models and tools which are 
crucial for facilitating timely interventions. In this study secondary data obtained from Mendeley data was comprehensively 
pre-processed thoroughly by applying image resizing, standardization and normalization for consistent image quality, followed 
by a gaussian blur for noise reduction, and histogram equalization for contrast enhancement. The enhanced dataset enabled the 
main features of the pneumonia-infected images to be captured effectively during model training. The dataset was split into 
sets for training, testing and validation in an 80%, 10% and 10% ratio. The training set was used to train the CapsNet model 
which demonstrated a commendable performance with a 96% accuracy, a precision of 96.97% and a recall of 97.42%. The 
Capsule Network model shows a significant promise as a tool for improving the efficiency and accuracy of pneumonia 
diagnosis, thus befitting patients and healthcare providers. 
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1. Introduction 

The World Health Organization (WHO) describes 
pneumonia as a severe respiratory infection that mainly 
affects the lungs. Pneumonia causes the alveoli in the lungs 
which fill up with air when someone breaths to become 
packed with pus and fluid, (WHO, 2022). Patients with 
pneumonia have severe limitations in their ability to take in 
oxygen and have difficulty breathing. Pneumonia is caused 
by infectious agents and the most common causes of 

pneumonia are viruses and bacteria which are mainly spread 
through the air we breathe. The Centers for Disease Control 
and Prevention (CDC) classify pneumonia as a lower 
respiratory tract infection with bronchitis and tuberculosis. 

Lower respiratory tract diseases were listed as the fourth 
leading cause of mortality worldwide in the WHO 2020 fact 
sheet. Over 450 million individuals suffer from pneumonia 
yearly Ruuskanen et al. [23]. More than four million people 
die from pneumonia each year, which accounts for 7% of the 
world's population. According to WHO (2021), 740,180 
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children under the age of five succumbed in 2019 due to 
pneumonia related complications. The deaths accounted for 
14% of total child mortality in children under the age of five 
and approximately 22% of all fatalities in children between 
the ages of one and five. Pneumonia is the most common 
infectious cause of death in children globally. These numbers 
show that pneumonia is a worldwide pandemic that requires 
response and that it impacts kids and families everywhere. 
WHO establishes that pneumonia is a major worldwide 
health concern since it causes loss of loads of lives each year. 

The CDC established that lower respiratory diseases are 
the second leading root source of mortality in low-income 
countries, Kenya included. According to the Kenyan 
Ministry of Health (MoH), Kericho, Kisumu, and West Pokot 
counties share the most burden of pediatric pneumonia deaths. 
According to Opuba and Onyango [20], pneumonia is the 
second leading cause of mortality for children under five 
years in Kenya and is responsible for 16% of all child 
fatalities. According to Hashmi et al. [10], poor health-
seeking by caregivers and limited access to healthcare are to 
blame for the burden of pneumonia. Pneumonia can be 
deterred, treated with inexpensive medicine, low tech care 
and prevented with basic treatments but this is only possible 
if the sickness is detected in a timely manner, Hashmi et al. 
[10]. 

1.1. Background 

Pneumonia is a significant health threat, ranking as the 
second leading cause of death in Kenya, with alarming global 
statistics. Hospital Clínic de Barcelona’s research highlights 
that pneumonia accounted for 2.5 million deaths worldwide 
in 2019, including 600,000 child fatalities under five years of 
age. UNICEF reports that pneumonia prerogatives more 
fledgling lives than any other communicable disease, causing 
over 700,000 child deaths annually, including newborns 
tragically, these deaths are mostly preventable. 

Globally, pneumonia affects more under five children than 
malaria and diarrhea combined, with over 870,000 children 
succumbing yearly. This disease represents approximately 
15% of all child deaths annually. Alarming statistics from 
2019 reveal that 2.5 million people died of pneumonia, with 
nearly a third being children under five, Dadonaite et al. [5]. 
As a result, pneumonia is the main cause of death in this age 
bracket. Compared to prior years, the death rate for older 
individuals decreased slightly in 2017, although the number 
of deaths among those aged 70 and above rose. 

American Thoracic Society states that pneumonia is the 
world’s principal cause of mortality, attributing to 16% of 
fatalities globally. In 2015, 2400 pneumonia deaths were 
reported daily, and 120 million episodes were reported yearly, 
amongst which 10% progressed to severe. The United 
Nations Children’s Fund (UNICEF) reported 880,000 deaths, 
among which most were infants below two years in 2016. In 
the United States, pneumonia is less fatal for children but still 
a problem in the national hospitals. As half of pneumonia 
deaths are between 18-64, young people are also affected by 
pneumonia. This is because pneumonia is the key root cause 

of sepsis and septic shock. UNICEF also stated that every 43 
seconds, a child dies of pneumonia. The latest WHO data 
from 2020 show that 22,571 people died in Kenya from 
influenza and pneumonia, accounting for 8.57% of all 
fatalities. Kenya is the 38th leading country in the world, 
with an age-adjusted death rate of 85.68 per 100,000 people. 
Pneumonia caused 15% of child deaths in 2018 and was the 
leading cause of mortality for children under five in the 
former year. More than one child per hour, or about 9,000 
children under five, died from pneumonia in 2018. Between 
2000 and 2018, pneumonia mortality decreased at an average 
annual rate of 6%. Kenya is anticipated to meet the 2025 
GAPPD target with a 4-year gap in 2029 if progress 
continues at the same rate. 

Pneumonia patients, once infected, the presenting features 
differ from trifling to severe reliant on the kind of infection, 
age of the patient, and general health. In some instances, 
patients might be infected but present no features, especially 
children under five. WHO (2021) states that most pneumonia 
symptoms are mistaken for flu or common cold, and failure 
to diagnose the disease at its early stages has proven fatal. 
Medical practitioners have brought forward procedures for 
diagnosing pneumonia in patients presenting disease 
symptoms. 

The primary emphasis of this study was the utilization of 
chest X-ray images as a reliable method for identifying 
pneumonia in patients. Metal appears fully white in an X-ray 
image, bone appears virtually white, fat, muscle, and fluids 
appear in various hues of grey, and air and gas seem 
completely black. To provide an appropriate diagnosis, 
medical professionals need to carefully examine the photos. 
In the diagnosis of pneumonia, the white sick tissues contrast 
sharply with the dark air in the lungs, blocking more of the 
X-ray. 

The necessity for computerizing the diagnosis is important 
because there are some areas of the world with limited access 
to experienced medical personnel, radiologists, and imaging 
specialists, whose forecast of such diseases matters 
substantially. This study, therefore, developed a model that 
can perform binary classification to detect the presence and 
absence of pneumonia from patients’ X-rays, especially in 
the early stages of infection. Early and accurate diagnosis is 
crucial for initiating appropriate treatment and reducing the 
morbidity and mortality associated with pneumonia. 

Chest X-rays have long been a valuable tool in the 
diagnostic process, allowing healthcare professionals to 
visualize the lungs and identify characteristic signs of 
pneumonia, such as infiltrates and consolidations. However, 
accurate interpretation of chest X-rays for pneumonia 
diagnosis requires high level expertise and experience. 
Interpretation challenges arise due to the variability in image 
presentation, overlapping features with other respiratory 
conditions, and the subjective nature of visual interpretation. 
These factors can lead to diagnostic errors, delays in 
treatment initiation, and subsequent negative impacts on 
patient outcomes. 

Artificial intelligence and deep learning models are becoming 
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quite popular in medicine. They are used as problem solvers in 
diagnoses to provide solutions beyond medical practitioners’ 
knowledge at minimum costs. They act as supplements in 
making clinical decisions, saving cost and time Convolutional 
neural networks were suggested by Milletari et al. [18] as a way 
for representing the prostrate in MRI volumes. In 2017, 
Curigliano et al. [4] established a deep learning model for skin 
cancer classification at the level of a dermatologist, proving the 
ability of artificial intelligence to classify skin cancer at a close 
proficiency analogous to that of dermatologists. These models 
have also been used by researchers to identify disorders via X-
rays. Two deep three-dimensional (3D) modified mixed link 
network (CMixNet) architectures were employed by Nasrullah 
et al. [19] for the identification and categorization of lung 
nodules. 

Pneumonia has been detected and diagnosed using 
artificial intelligence models by Aledhari et al. [1], Yee and 
Raymond [26], and Erdem and AYDN [6]. These studies 
used the convolution neural network model for diagnosis. 
Hashmi et al. [10] used deep transfer learning with several 
models, and Ayan et al. [2] used an ensemble model, to 
mention a few to diagnose pneumonia from chest X-rays. 
Recent advancements in deep learning and neural network 
models have shown great potential in automating medical 
image analysis tasks. CapsNet, a novel neural network 
architecture proposed by Sabour et al. [24], offers a unique 
approach by introducing capsules, which capture spatial 
relationships and hierarchical representations within images. 

Manual interpretation of chest X-rays for pneumonia 
diagnosis has inherent limitations. Radiologists may experience 
difficulties in distinguishing between pneumonia and other lung 
conditions with similar radiographic findings. Moreover, the 
process can be time consuming, leading to diagnosis and 
treatment initiation delays. The growing demand for accurate 
and efficient pneumonia diagnosis has driven researchers to 
explore automated image classification techniques, particularly 
leveraging the supremacy of deep learning. 

Deep learning, a subsection of artificial intelligence, has 
revolutionized various fields, including computer vision and 
image examination. Automated image classification models 
built on deep learning techniques offer several potential 
advantages for pneumonia diagnosis. They can quickly 
process large volumes of data, detect subtle abnormalities, 
and provide consistent and objective assessments. 
Furthermore, these models can potentially improve the 
efficiency of pneumonia diagnosis, allowing healthcare 
professionals to prioritize and expedite treatment plans for 
affected individuals. By leveraging the power of deep 
learning and automated image classification, we can 
potentially enhance the accuracy, efficiency, and accessibility 
of pneumonia diagnosis from chest X-ray images. This can 
significantly impact patient outcomes, clinical decision-
making, and public health strategies. 

1.2. Literature Review 

Deep learning has emerged as a powerful subset of 
machine learning that has revolutionized various fields, 

including computer vision and image analysis. It has shown 
remarkable success in solving complex problems by 
automatically learning hierarchical representations of data, 
particularly in the form of artificial neural networks. Deep 
learning models have become the go-to approach for image 
classification tasks; for instance, CNNs are designed to 
mimic the human visual system’s hierarchical organization, 
allowing them to learn and extract meaningful features from 
images effectively. The essential advantage of deep learning 
lies in its ability to automatically learn intricate patterns and 
representations from large amounts of data. Unlike traditional 
machine learning methods that rely on manual feature 
engineering, deep learning models can autonomously study 
the topographies directly from the raw data. This makes them 
highly effective in capturing complex and abstract patterns 
that may be difficult to define explicitly. 

Deep learning techniques have demonstrated great promise 
in the context of pneumonia detection from chest X-ray 
images. By training CNN models on large-scale datasets, 
such as the ChestX-ray14 dataset, these models can learn to 
distinguish regular chest X-rays from those exhibiting 
pneumonia-related abnormalities. They can automatically 
learn the subtle patterns and characteristics indicative of 
pneumonia, allowing for accurate classification. Image 
classification is a fundamental task within deep learning, 
where the goal is to assign a label or class to an input image 
based on its content. In the case of pneumonia diagnosis, 
image classification models can learn to differentiate 
between healthy and infected chest X-rays, enabling the 
detection and identification of pneumonia-related features. 

Deep learning models, particularly CNNs, have performed 
remarkably in various image classification tasks, including 
pneumonia detection from chest X-ray images. They have 
accomplished high accuracy rates, often comparable to or 
surpassing human radiologists’ performance. This suggests 
their potential as valuable tools in assisting healthcare 
professionals in diagnosing pneumonia and improving 
efficiency, accuracy, and patient outcomes. In recent years, 
many researchers have highlighted the importance of the 
prompt detection and diagnosis of pneumonia and other 
diseases using deep learning techniques. A deep-learning 
method for detecting diabetic retinopathy in retinal fundus 
pictures was developed and validated by Gulshan et al. [8]. 
Although their work was not specifically about diagnosing 
pneumonia, it did validate the efficiency of deep learning in 
this field. Convolutional neural networks were used by 
Lakhani and Sundaram [14] for the automated categorization 
of pulmonary TB on chest radiographs. Although their study 
focused on tuberculosis specifically, the use of deep learning 
in the diagnosis of pneumonia has similarities in terms of 
image processing and categorization. 

To better detect pulmonary nodules on chest radiographs, 
Lee et al. [15] created a deep learning-based system, 
showcasing the potential of deep learning to increase the 
accuracy of pneumonia diagnosis. In addition, Chassagnon et 
al. [3] gave information on current developments in the 
automated detection of pulmonary nodules on chest CT scans, 
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which can guide the creation of sophisticated diagnostic tools 
for pneumonia. According to a report by Kareem et al. [11], 
multiple machine learning methods, such as convolution 
neural network (CNN), k-nearest neighbor (KNN), RESNET, 
CheXNet, and DECNET, can be utilized to diagnose 
pneumonia. They thoroughly examined the literature to 
determine how we may pool hospitals and medical facilities 
to train machine learning models from their datasets, 
allowing the ML algorithms to detect diseases more 
accurately and effectively. 

Convolution Neural network, in particular, has been 
widely used in computer vision and problems involving vast 
complex data sets that do not promise any precise statistical 
distributions. Gupta [9] developed a CNN model for 
detecting pneumonia from chest X-ray images and 
accomplished a validation accuracy of 93% and a training 
accuracy of about 99%. GM et al. [7] performed a study on 
the detection of pneumonia using 15 different CNN models 
to find a model that is easy to train and computationally less 
expensive. They concluded that there is a need for extensive 
studies to obtain simple models that can maintain high-level 
accuracy and performance in diagnosing pneumonia. It is 
therefore evident that CNN models are limited because they 
require very high computation power and can take much time 
during training, hence time inefficient. CNN also requires 
large amounts of datasets to process and train the model. 

Ensemble learning has also been investigated to enhance 
the robustness and accuracy of pneumonia diagnosis models. 
By combining predictions from multiple deep learning 
models, ensemble models can capture a diverse range of 
features and improve the overall classification performance. 
Ensemble methods have shown promising results, further 
increasing the accuracy and reliability of pneumonia 
diagnosis. Sirazitdinov et al. [25] suggested an ensemble 
model for pneumonia identification and localization using a 
significant chest X-ray database based on two CNN models, 
RetinaNet and mask R-CNN. They showed that focus loss 
and object detection were superior in terms of categorization 
metrics, although accuracy levels suggested that the study 
needed to be expanded. 

Liz et al. [17], used ensembles of CNN models to diagnose 
pediatric pneumonia to maximize the Area Under the curve 
(AUC) and the true positivity rate TPR. Their study was 
mainly focused on addressing the challenges in CNN models 
with highly unexplainable outputs that make the 
classification process rigorous, as well as the fact that they 
require vast datasets for training to achieve a high degree of 
accuracy. The ensemble model developed attained robust 
outcomes compared to the Kermany et al. [13] study, which 
used deep transfer learning to distinguish viral from bacterial 
pneumonia from chest x-rays. 

An ensemble of deep convolutional neural networks was 
utilized by Ayan et al. [2] to identify pediatric pneumonia in 
chest X-ray images. They used seven CNN models that had 
already been trained on the ImageNet dataset. The ensemble 
was trained on the chest X-ray dataset using the appropriate 
transfer learning and fine-tuning techniques. They were 

successful in correctly classifying normal, viral, and bacterial 
pneumonia in chest X-ray images with an accuracy of 90.71. 
Ayan et al. [2] assert that using transfer learning and fine-
tuning to find the hyperparameters of pre-trained CNN 
models exposes a time-consuming trial-and-error process. 
The important complimentary traits of ensemble CNN 
models are high variance and low bias. Due to their 
potentially poor interpretability, need for big datasets, and 
high computing demands, ensemble learning techniques have 
some limitations. The models are extremely intricate and 
their creation necessitates a high level of expertise. They also 
add learning time and memory restrictions to the issue 
because they are computationally expensive. 

Researchers have also explored transfer learning, where 
pre-trained CNN models on large-scale image datasets, such 
as ImageNet, are fine-tuned on pneumonia-specific datasets. 
Transfer learning allows models to leverage knowledge 
learned from vast amounts of data, improving generalization 
and performance on pneumonia detection tasks. Kermany et 
al. [13] used transfer learning to diagnose pediatric 
pneumonia. The model used was highly accurate in 
diagnosing pneumonia as well as distinguishing between 
Viral and Bacterial pneumonia but was limited in that 
training a highly accurate model with a small data set will 
provide inferior performance to that of a model trained from 
a random initialization on a vast dataset which would take 
weeks to achieve accuracy. This indicates that transfer 
learning requires vast datasets for training to achieve high 
accuracy, which will require more time. 

Liang and Zheng [16] suggested using transfer learning to 
set the model weight parameters and a residual structure and 
dilated convolution to classify pediatric pneumonia images. 
The main aim of the study was to find a solution to the issues 
of poor image resolution and overlying in the inflamed area 
of the chest X-ray. The model attained a f1-score of 92.7% 
and a classification accuracy of 96.7%. Transfer learning 
techniques were utilized to pre-train the model in a recent 
study by Rehman et al. [22] to create an effective diagnosis 
of COVID-19 disease by distinguishing it from healthy cases, 
viral pneumonia, and bacterial pneumonia. Despite achieving 
accuracy in the results, a large amount of CT and X-ray 
datasets was required. Transfer learning also is limited in that 
it requires large data sets to pre-train the model to achieve 
perfect weights and accuracy of the model. Transfer learning 
is inefficient as a model can take weeks to learn images if the 
data is very large. Additionally, transfer learning 
architectures are broad and many, and choosing a perfect 
architecture is vital to obtaining a perfect diagnosis in case of 
diseases. 

These advances in deep learning for pneumonia diagnosis 
are promising, but several challenges and considerations 
remain. The lack of time and computationally efficient 
models to be used even when resources are limited and for 
small datasets needs to be addressed. Additionally, the 
interpretability and explain ability of deep learning models in 
pneumonia diagnosis are areas that require further research to 
build trust and facilitate integration into clinical practice. 
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Future research should address the remaining challenges to 
fully yoke the latent of deep learning in pneumonia diagnosis 
and enhance patient care. 

2. Methodology 

2.1. Dataset 

This study used secondary data from Mendeley data. The 
dataset was created and uploaded by Kermany et al. [12] in 
2018. They created a dataset that included hundreds of 
validated OCT and chest X-ray pictures, which were offered 
and scrutinized in "Identifying Medical Diagnoses and 
Treatable Diseases by Image-Based Deep Learning." The 
dataset is readily available for research purposes. Python 
programming was used to perform all these analysis 
procedures. 

Python seamlessly integrates with popular machine 
learning libraries like Scikitlearn and TensorFlow, enabling 
researchers to build and evaluate complex models for 
classification, regression, and other tasks. This is particularly 
valuable in image classification, where machine learning 
algorithms are commonly employed. Python promotes 
reproducibility in research by enabling the creation of clean, 
well-documented code that can be easily shared and 
replicated. Its ability to efficiently handle large datasets 
makes it suitable for scalable data analysis tasks, ensuring 
researchers can effectively tackle substantial volumes of data 
and derive meaningful insights. To achieve the goal of this 
study, the methodology entailed data pre-processing and 
model training. 

2.2. Data Pre-Processing 

Data pre-processing is a significant step in machine 
learning models as it enhances the model’s accuracy. Pre-
processing of data cleans the data, fills up the missing values, 
removes outliers, and identifies specific values in the data. 
The images in the dataset were provided as grayscale PNG 
images, and the following pre-processing procedures were 
carried out. 

Resizing an image involves changing its dimensions while 
maintaining its aspect ratio. It involves altering the number of 
pixels in an image to make it larger or smaller. The chest X-
ray images were resized to a standardized resolution. This 
step ensured uniformity and consistency in the input size of 
the images, which is crucial for model training. 

Image normalization is a technique used to standardize the 
pixel values of an image by bringing the pixel values within a 
specific range or distribution, making them more suitable for 
further analysis or processing tasks. Normalizing an image 
can improve the performance of machine learning models, 
enhance image quality, and ensure fair comparisons between 
different images. This step helps reduce the influence of 
variations in image brightness and contrast, making the data 
more suitable for training the model. Mini max normalization 
was applied to the resized images. 

Noise reduction aims to remove and reduce unwanted 

noise from images. Several variables, including sensor limits, 
transmission flaws, and ambient influences, might cause 
noise. Removing noise helps improve image quality, enhance 
details, and facilitate more accurate analysis and feature 
extraction. Gaussian blur was applied, a widely used image-
processing technique for reducing noise and smoothing 
images. It is based on the mathematical concept of 
convolving an image with a Gaussian kernel. 

Contrast enhancement is a technique used to improve 
images’ visual quality and distinguishability by increasing 
the contrast between different pixel intensities. It aims to 
enhance the differences in brightness or color between image 
regions, making them more prominent and improving the 
perception of details. Histogram equalization was applied to 
the images; it is a widely used image enhancement technique 
that helps improve an image’s contrast and visibility. It 
redistributes the pixel intensities in an image to cover a 
broader range of values, enhancing its overall appearance. 
Histogram equalization was applied to the images to help 
improve the visibility of details to capture the presence of 
any pneumonia infiltrations. 

The pre-processed images were then split into 80%, 10% 
and 10% proportions for training, testing and validation, 
respectively. Data partitioning allows for rigorous evaluation 
of models and helps ensure they are robust and reliable when 
deployed in practical applications. It enables the selection of 
appropriate models and hyperparameters, leading to 
improved performance and reliable predictions of unseen 
data. 

2.3. The Capsule Network Model 

The Capsule Network model, also known as CapsNet, is a 
type of neural network architecture introduced by Geoffrey 
Hinton and his colleagues in 2017. It was designed as an 
alternative to traditional convolutional neural networks 
(CNNs) and aimed to address some of their limitations, 
particularly in tasks involving object recognition and 
understanding spatial relationships. The Capsule Network 
model is based on the concept of "capsules," which are 
groups of neurons that encode the instantiation parameters of 
an entity and the presence of that entity in an image. These 
capsules capture the entity’s presence and properties, making 
them more potent than individual neurons in CNNs. The 
proposed capsule model is given as follows: 

The key idea behind CapsNet is introducing a dynamic 
routing mechanism called "routing-by-agreement." This 
mechanism allows capsules at one layer to communicate with 
capsules at the next layer, enabling them to reach a consensus 
on the existence and properties of entities in the input. This 
process considers the pact between lower-level and higher-
level capsules to determine the weights of connections, 
which facilitates the hierarchical representation of complex 
spatial relationships. The CapsNet model has shown 
promising results in various tasks, including digit recognition, 
object detection, and image segmentation. It has 
demonstrated better resistance to occlusion and viewpoint 
changes than traditional CNNs. However, due to its relative 
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novelty, CapsNet is still an active research area, and further advancements and improvements are being explored. 

 

Figure 1. The Capsule Network Model, Source (internet). 

2.3.1. The CapsNet Architecture 

The CapsNet architecture consists of several layers of 
capsules that capture entities’ hierarchical relationships and 
properties within input data. The input layer receives the raw 
data, usually images or feature vectors. The data is passed to 
the primary capsule layer: The primary capsule layer extracts 
low-level features on the input data and sends the data to the 
dense capsule layer made up of convolutional capsules that 
represent a higher-level feature and are connected to primary 
capsules through weighted connections. The primary 
capsules’ outputs are transformed into vectors, representing 
the instantiation parameters, and are then weighted and 
combined to form the output of the convolutional capsules. 
The higher levels are passed through the routing mechanism. 
It involves iterative routing between lower-level and higher-

level capsules to establish agreement on the existence and 
properties of entities. The routing process determines the 
weights of the connections between capsules based on the 
agreement, allowing for the representation of hierarchical 
relationships and spatial configurations. The extracted 
features are passed to the final layer that produces the 
model’s classifications. It often consists of capsules that 
represent specific classes or categories. 

In the context of the CapsNet architecture, let us now dive 
into the mathematical equations that govern its statistical 
framework. These equations represent the transformations 
and computations within the primary capsule layer, digit 
capsule layer, and routing algorithm. By understanding these 
equations, we can learn how the CapsNet architecture learns 
hierarchical representations of visual entities. 

 

Figure 2. The CapsNet model architecture, Source (Sabour et. al.). 

The input into CapsNet is the actual image supplied to the 
neural net. The input image is three-dimensional, with pixel 

values representing the image height and image width, and 
the image color channels. The chest X-ray images were 
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Grayscale with 224 by 224 pixels. This was captured in the 
input and stored in a 224x224x1 matrix [224, 224,1]. Let � 
represent the input image tensor received by the input layer 
and fed into the primary capsule layer. The primary capsule 
layer aims to generate primary capsules representing low-
level features extracted from the input image. It extracts 
features from the image vector by convolution. In image 
processing and computer vision, convolution applies a kernel 
to an input image to extract specific features. Consider an 
image �, which can be represented as an �� by �� array and 
defined by a function as follows; 

�: {1, . . . , ��} ∗ {1, . . . , ��} → � ⊆ ℝ��, �� ↦ ��,� 
� ∈ ℝ�����∗����� 

= �� ��, �� . . . � ��,��. . . �!,! . . .���, �� . . . ���,�� "  

The convolution algorithm on the image � given a kernel � 
is: 

�� ∗ ��#,$ : = ∑ ∑ �&,'��'� ����&� ��   

The rectified linear activation function (ReLU), a non-
linear function that outputs 0 otherwise and the input directly 
if the input is negative, is always applied after the 
convolution layer. Its defined as; 

(�)� = max�0, )� 
The output from convolution is then captured in the 

primary capsule, which also works on the basic idea of 
convolution but captures complex features from the stack of 
convolution outputs. It has a set number of primary capsules 
whose job it is to take the convolution's basic features and 
produce combinations of them. Following the completion of 
their calculations on their inputs, capsules "encapsulate" the 
outcomes into a condensed vector of highly detailed outputs. 
The output of the primary capsule can be represented as a 
combination of vectors .� . The alignments of the vectors 
convert some internal state of the detected items, and these 
vectors convert probabilities that lower-level capsules 
recognized in the related objects. This is now delivered into 
the dense capsule layer. 

The dense capsule layer learns the instantiation parameters 
of the capsules and models’ higher-level properties using the 
input of the primary capsules. The following procedures take 
place in the dense layer; 

1. The input vectors .� are multiplied by their conforming 
weight matrices ���. These matrices encode imperative 
spatial relationships between lower-level features and 
higher-level features. This is done such that the vectors 
achieve the affine transformation. This multiplication 
gives the prediction vector /̂�|� as follows; 

/̂�|� = ���.� 
2. The weight matrices are adjusted by a coupling 

coefficient 2�� , which is introduced to multiply a 

capsule’s output by the prediction vector. This enables 
capsules to decide on which higher level capsule to 
send their output. The decision the capsule makes relies 
on the dynamic routing algorithm. The prediction 
vector is multiplied by the conforming coupling 
coefficient 2��; 

3 = 2��/̂�|� 
3. The weighted input vectors are combined to give the 

output 3�: 
3� = ∑2��/̂�|�  

4. The vector is passed through the novel “Squashing” 
activation function. The “Squashing” function is a 
nonlinear activation function that takes a vector and 
then “squashes” it to have a dimension not exceeding 1 
without altering its direction. The squashing function is 
given by; 

4 ⇐ ∥7∥�∥7∥� 7∥7∥  
It transforms vector 3� into vector 8�; 

8� = ∥$9∥�∥$9∥�
$9∥$9∥  

2.3.2. Dynamic Routing 

The dynamic routing algorithm's fundamental principle is 
that a lower-level capsule will convey its input to a higher-
level capsule that "agrees" with it. The algorithm updates the 
dense capsule layer’s coupling coefficient 2��. The algorithm 
decides how to modify weights in a network, specifying the 
method for allocating weights to the connections between 
neurons. A capsule network modifies the weights so that 
nearby high-level capsules are closely connected with nearby 
low-level capsules. The affine transformation determines the 
proximity measure. 

The input of the algorithm is the prediction vector /̂�|�, : 
the number of routing iterations and ; the number of layers. 
The procedure as given by Sabour et. al. [24]: 

1. Introduce <��  a temporary value used to initialize the 
coupling coefficient 2��  and updated in the iteration 
process. 

2. Iterate the for loop : times. 
3. Apply the softmax function to <��  to output a non-

negative coupling coefficient 2��, where all the outputs 
sum to 1 as follows: 

2�� = =>?9∑ =>?@@   

4. Compute the he weighted sum for all capsule in the 
subsequent layer. 

5. Squash the weighted sum for every capsule in the 
subsequent layer. 

6. Check and update weights <�� . 
<�� ← <�� + /̂�|� ∗ 8� 
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Where /̂�|�  is the input to the capsule from low-level 
capsule C, and 8�is the output of high-level capsule �. 

7. Return and restarts the D��  calculation and repeats r 
times. 

Following r iterations, all higher-level capsule outputs 
were computed, and routing weights were determined. The 
forward pass may continue to the network's subsequent level. 
The dense layer will produce a set of capsule activations of 
equal dimensions. The activations represent the “explicit 
pose parameters” of the class each chest X-ray image is 
associated with. The output layer performs classification 
based on the presence and properties of the entities 
represented by the dense capsules. The probabilities of the 

different classes are obtained through a SoftMax activation 
function: 

E = 3F(GH4)I8�J 
E = =K9∑ =K9@   

The CapsNet model was trained using the Squared Hinge 
Loss function. The essential premise is that the model 
"wants" the correct class for each image to score by a 
predetermined amount more than the erroneous 
classifications. It is represented as follows: 

LM = NM�max�0,H�−∥ PM ∥�� + Q�1 − NM�max�0, ∥ PM ∥ −H �� 

Where: NM = 1 if an image of class k is present, H� = 0.9, H - = 
0.1 and 8� = vector obtained from dense capsule layer. The 
loss for a correct capsule is represented by the first 
component of the equation, and the loss for an inaccurate 
capsule is represented by the second term. The value of Q is 
0.5 to limit the loss when some categories do not exist. In 
order to accomplish correct classification, it is important to 
make sure that the vector modulus in lieu of the digital 
capsules of this class is as large as feasible and the vector 
modulus of other classes is as small as conceivable. Each 
dense layer capsule loss is added together to create the 
overall loss. 

2.4. Model Training 

The key phase in machine learning is the training process, 
where a model is taught to detect patterns and make 
predictions based on prepared data. During training, the 
model acquires knowledge from the data, which improves its 
predictive abilities over time. Training involves several steps 
and procedures: 

Network Initialization: The CapsNet architecture 
parameters, including capsule weights and other learnable 
parameters, were initialized. The Xavier initialization method 
was used to prevent issues like vanishing or exploding 
gradients by setting the initial weights of parameters based 
on input and output dimensions. 

Forward Propagation: The training data was passed 
through the network during forward propagation. Activations 
and outputs of capsules in each layer were calculated based 
on input data and parameter values. A squashing function 
was used to activate capsules, representing the likelihood of 
specific features. 

Loss Calculation: A suitable loss function, such as cross-
entropy loss, was defined to measure the discrepancy 
between the model's predictions and true labels. 

Iterative Training: Initial steps were repeated for a 
predefined number of epochs. The network learned from the 
training data by adjusting parameters based on gradients and 
the chosen optimization algorithm. 

Validation and Hyperparameter Tuning: The model's 
performance was periodically evaluated on a separate 

validation dataset. Metrics like accuracy, precision, and recall 
were monitored. Validation results guided the fine-tuning of 
hyperparameters such as learning rate, regularization 
parameters, and network architecture to enhance the model's 
performance. 

Testing: After completing training, the model's 
performance was assessed on a separate testing dataset not 
used in training or validation. This provided an unbiased 
evaluation of the model's generalization abilities and 
performance on unseen data. 

The training process also employed various techniques: 
Batch Processing: Data was processed in batches during 

each epoch to speed up training and use computational 
resources efficiently. 

Optimizer Selection: The appropriate optimizer, such as 
the Adam optimizer, was chosen to reduce training time and 
effort. 

Hyperparameters such as the number of epochs and the 
learning rate were fine-tuned to control the behavior of the 
model during training and impact the model's performance. 

Regularization with Reconstruction: Regularization 
techniques with reconstruction loss were utilized to improve 
model stability and generalization. 

2.5. Model Evaluation 

The performance of the trained CapsNet model was 
evaluated and compared with outstanding deep learning 
models using the following metrics: 

Accuracy was used to evaluate the overall correctness of a 
model’s predictions by calculating the ratio of correctly 
classified cases to the total number of cases. 

Precision was used to evaluate the proportion of correctly 
classified images from the total number of images classified 
as a specific class. 

Recall was used to evaluate the proportion of correctly 
classified images out of the total number of actual cases of 
ground truth positives. 

The F1 Score is the harmonic mean of precision and recall, 
providing a balanced evaluation metric, making it useful in 
scenarios where the dataset is imbalanced. 

Receiver Operating Characteristic (ROC) curve: The 
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performance of the model at different categorization 
thresholds is graphically represented by the ROC curve. The 
trade-off between true positives and false positives is 
illustrated by plotting the true positive rate (recall) versus the 
false positive rate. 

Area under the curve (AUC): It is used to express how 
well a classification model based on the ROC curve 
performed overall. It gives a single result that sums up the 
model's performance across all thresholds and indicates the 
percentage of correctly identified photos. 

3. Results and Discussion 

The dataset used in this study was secondary data obtained 

from Mendeley data, developed and uploaded by Kermany et 
al. (2018a) in 2018. The dataset consisted of 5,856 chest X-
ray images. Among these, 1,583 were normal chest X-ray 
images from pneumonia cases, while 4,273 were pneumonia-
infected chest X-ray images from normal cases. The 
distribution in the dataset reflects the prevalence of 
pneumonia cases in the dataset. It ensures that both normal 
and pneumonia-positive cases are adequately represented for 
training and evaluation. The dataset’s composition enabled 
the CapsNet model to learn and differentiate between normal 
and pneumonia cases effectively. Appropriate pre-processing 
techniques were implemented. 

A sample of images used can be viewed as follows: 

 

Figure 3. Sample X-ray images. 

The images were pre-processed, the initial step they were 
resized to change their dimensions. This ensured that they 
had the same dimensions, making them compatible for 
further processing and analysis. The resized images were 
then standardized using min-max normalization to a 
consistent scale. This helped to bring all the pixel values to a 
similar scale and improved the model’s convergence during 
training. Gaussian blur was applied to the images as a noise 
reduction technique. It is a widely used image-processing 
technique for reducing noise and smoothing images. It is 
based on the mathematical concept of convolving an image 

with a Gaussian kernel. Gaussian blur effectively reduces 
random and high-frequency noise in an image. 

Histogram equalization was applied to the images; it is a 
widely used image enhancement technique that helps 
improve an image’s contrast and visibility. It redistributes the 
pixel intensities in an image to cover a broader range of 
values, enhancing its overall appearance. Histogram 
equalization was applied to the images to help improve the 
visibility of details to capture the presence of any pneumonia 
infiltrations. The pre-processed images were viewed as 
follows where notable variations and improvements can be 
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observed. 

 

Figure 4. Sample pre-processed X-ray images. 

The pre-processed data was split into 80% to 20% 
proportions for model training and evaluation, respectively. 
The 80% proportion was used as the training set, while 10% 
was used as the validation set and 10% as the testing set. 

There were 4684 chest x-ray images in the training set and 
586 in the validation and testing sets. They were distributed 
as follows: 

 

Figure 5. Distribution of partitioned data. 

The distribution was imbalanced for the normal and 
pneumonia cases. Still, the split ensured a balanced 
distribution of proportions of cases in all the sets, which 

is key in the model validation and evaluation after 
training. 
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3.1. Model Training 

The Capsule Neural Network (CapsNet) was meticulously 
trained throughout 50 epochs, each processing a batch size 32. 

A learning rate of 0.001 was employed throughout the 
training process. The output below was obtained to mark the 
training process: 

Table 1. Output of model training first 10 epochs. 

Epoch Steps-time 
Training Validation 

Loss Accuracy Loss Accuracy 

1/50 147/147– 422s 0.3227 0.8574 0.1432 0.9556 
2/50 147/147– 433s 0.1611 0.9372 0.1646 0.9403 
3/50 147/147– 423s 0.1540 0.9417 0.1284 0.9625 
4/50 147/147– 429s 0.1259 0.9522 0.1136 0.9608 
5/50 147/147– 415s 0.1087 0.9584 0.1183 0.9488 
6/50 147/147– 427s 0.0943 0.9652 0.1062 0.9642 
7/50 147/147– 414s 0.0752 0.9725 0.1636 0.9437 
8/50 147/147– 413s 0.0627 0.9778 0.1114 0.9573 
9/50 147/147 – 415s 0.0429 0.9855 0.1934 0.9300 
10/50 147/147 – 407s 0.0395 0.9863 0.1475 0.9454 

 

During the model training, several noteworthy 
observations were made. Initially, there was a significant 
improvement in model training accuracy as the number of 
epochs increased, peaking at epoch 16. Beyond this point, the 
model’s training accuracy reached a plateau at a training 
accuracy of 1, indicating that further epochs did not 
significantly enhance its performance. The validation 
accuracy was 0.9539 at this level. Interestingly, it was also 
observed that the time required for each successive training 

phase decreased as we progressed through the epochs. 
Additionally, the model demonstrated its proficiency in 
minimizing the loss function, where the training loss was 
consistently decreased with each epoch to achieve a loss of 
0.0016 at epoch 16. This pattern indicated that the model 
effectively penalized deviations from the expected outcomes, 
reflecting a steady linear learning rate. The accuracy and loss 
plots were observed as follows: 

  

Figure 6. Training and validation accuracy and loss plots. 

3.2. Model Evaluation 

The classification metrics were obtained, the Capsule 
Network achieved an accuracy of 0.96 a precision of 0.9697, 
a recall of 0.9742 and a F1 score of 0.972. An accuracy of 
0.96 implies that the model correctly predicted the classes of 
96% of the samples in the dataset, which is a high overall 
correctness rate. This implies the CapsNet model performed 
well in diagnosing pneumonia from the chest X-ray images. 
A precision of 0.9742 suggests that 96.97% of the predicted 
pneumonia cases were indeed true positives, implying a 
reasonably low rate of false positive predictions. A recall of 

0.9742 means that the model correctly captured 97.42% of 
the positive cases, indicating that it can detect pneumonia 
cases. The model F1 score considers both false positives and 
false negatives, as follows: 

F 1 score = 2 ∗ (Precision ∗ Recall) / (Precision + Recall) = 2 ∗ (0.9697 ∗ 0.9742) / (0.9697+0.9742) = 0.972 

With an F1 score of 0.972, the model demonstrates a good 
trade-off between precision and recall, indicating overall 
effective performance. 

The Receiver Operating Characteristic Curve was obtained 
as follows: 
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Figure 7. ROC curve. 

The ROC curve shown above shows larger true positives 
and smaller false negatives since the true positive rate is 
represented by large numbers on the y-axis. The 
classification curve was deeply elongated to the top left, 
indicating a high performance for the classification model. 
The area under the curve for the classification was also 
obtained from the curve. The AUC was 0.99, which implies 
outstanding discrimination in the classification. The 
CapsNet model performed well in classifying pneumonia 
cases hence, it is very suitable for early pneumonia 
diagnosis. 

3.3. Comparison 

The CapsNet model findings were evaluated and compared 
with the outstanding deep learning models. The following 
results were obtained. 

Table 1. Model comparison metrics. 

Model 
Metrics 

Accuracy Precision Recall F1 score Time 

CapsNet 0.96 0.9697 0.9742 0.9720 21 
CNN 0.92 0.8920 0.9212 0.9352 42 
Autoencoder 0.91 0.8820 0.9012 0.8965 36 
ResNet 0.86 0.8420 0.8624 0.8862 48 
CNN-LSTM 0.89 0.864 0.8456 0.8461 56 

The trained CapsNet model outperformed the CNN, 
Autoencoder, a transfer learning ResNet model and an 
ensemble CNN-LSTM model in the diagnosis of pneumonia. 
The model competed fairly in terms of classification 
accuracy with the CNN and the Autoencoder but was able to 
outstand in the computation time. The time taken to train our 
model was 21 minutes compared to the large amount of time 
required to train the ensemble and transfer learning models. 
These results establish the foundation of this study to obtain a 
model that was accurate and efficient for pneumonia 
diagnosis. The Capsule network model is indeed accurate and 
efficient in the automatic detection of pneumonia from chest 
x-ray images. 

4. Conclusion and Recommendations 

The results and findings highlight the effectiveness of the 
CapsNet model as the main model for early diagnosis of 
pneumonia from chest X-ray images. With its powerful 
architecture and advanced features, the CapsNet model 
performs better in accurately classifying pneumonia cases. 
The high accuracy, precision, recall, and F1 score achieved 
by the CapsNet model emphasize its potential as a robust tool 
for pneumonia diagnosis. These findings underscore the 
importance of leveraging innovative deep learning techniques, 
such as CapsNet, in developing cutting-edge automated 
image classification systems for improved early detection 
and treatment of pneumonia. 

The findings of this study recommend that there is need 
to conduct further studies to validate the performance of 
the models in real-world clinical settings. Collaborating 
with medical professionals and evaluating the models’ 
effectiveness on patient data can help assess their practical 
utility and integration into the healthcare workflow. The 
major issue with health science is the clinical validation of 
developing technologies. There is, therefore, a dire need to 
come up with a way to ensure validation and further 
initiation. 

The deep learning field has a swamp of upcoming future 
research that can enhance the capabilities and applicability of 
automated systems for early pneumonia diagnosis, ultimately 
contributing to improved patient care and outcomes. The 
findings provide valuable insights into the development and 
evaluation of models for early diagnosis of pneumonia from 
chest X-ray images. 
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